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Bohr’s correspondence principle in physics

The principle

Bohr’s principle – M. Born’s version [Bohr 1920, Born 1933].
«It must be demanded that, for the limiting cases of large masses and of orbits of large dimensions, the
new mechanics passes over into classical mechanics»

Mathematical physics interpretation – in view of lecture I.
Given a physical theory modeled by a concrete realization of 𝕎ℏ(𝒯, 𝜍) (e.g., 𝒫(𝜑)2,
𝜑4

3, Sine-Gordon, Nelson, Pauli-Fierz models; nonrelativistic quantum mechanics),
one must recover the corresponding model of classical physics in the limit ℏ → 0.
(Recall that our ℏ is a mathematical parameter measuring how much we are
deforming the commutative theory to a noncommutative one)
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Bohr’s correspondence principle in physics

Quantization is natural , but how robust is it?

The Wigner measures result of Lecture I is very general, but it implies that states
could lose mass in the limit; furthermore, the correspondence holds only for the
expectation of “a few” observables (surely, not many important physical ones like the
canonical observables, the energy, …)

Does the correspondence principle holds for the dynamics of a model? For its
(ground state) energy, bound states?

Establishing the correspondence principle is an important “sanity check”:

For (candidates of) quantum gravity, it is a crucial problem to establish the
correspondence principle, and one of the main obstacles in making models such as
loop quantum gravity acceptable [Giesel-Thiemann 06-08].

Even in more “orthodox” field theories, it is unclear whether after renormalization
the classical limit still behaves as expected (QED ⟶

ℏ→0
CED?).
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The van Hove model – A perfect Playground

Original setting [van Hove/Myiatake 52, Derezinski 2003]

Consider a scalar field generated by an immovable source, whose charge
distribution is given by ℱ−1𝑓 .

The van Hove Hamiltonian in Fock space takes the form

𝐻ℏ(𝜔, 𝑓 ) = dΓℏ(𝜔) + 𝑎ℏ(𝑓 ) + 𝑎∗
ℏ(𝑓 ) .

For later convenience, for any 𝛼 ∈ ℝ, let us define

𝐿2𝛼(ℝ𝑑) ∶= 𝐿2(ℝ𝑑 , 𝜔𝛼(𝑘)d𝑘) .

Observe that the Fock space is the GNS Hilbert space for the Fock vacuum state

𝜔Ωℏ ∈ Regℏ(𝒮ℝ(ℝ𝑑), Im⟨ ⋅ , ⋅ ⟩2), 𝜔̂Ωℏ(𝜂) = 𝑒− 𝜋2ℏ
2 ‖𝜂‖2

2 . In this representation,

𝑊ℏ(𝑓 ) = 𝑒𝑖𝜋(𝑎∗
ℏ(𝑓 )+𝑎ℏ(𝑓 )) .
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The van Hove model – A perfect Playground

Theorem (Derezinski 2003)
Let 𝐻ℏ(𝜔, 𝑓 ) be the van Hove Hamiltonian in Fock space. Then:

[ Infrared regular case ] 𝑓 ∈ 𝐿2
−1 ∩ 𝐿2

−2 ⟺ 𝐻ℏ(𝜔, 𝑓 ) is self-adjoint, bounded from
below, inf𝜎(𝐻ℏ) = −‖ 𝑓 ‖2

𝐿2
−1
, and there exists a unique Fock ground state |𝜓gs

ℏ ⟩⟨𝜓gs
ℏ | , with

𝜓gs
ℏ = 𝑊ℏ( 𝑖

𝜋ℏ𝜔 𝑓 )Ωℏ

[ Infrared singularity of type I ] 𝑓 ∈ 𝐿2
−1 ∖ 𝐿2

−2 ⟺ 𝐻ℏ(𝜔, 𝑓 ) is self-adjoint, bounded
from below, inf𝜎(𝐻ℏ) = −‖ 𝑓 ‖2

𝐿2
−1
, and there exists no Fock ground state.

[ Infrared singularity of type II ] 𝑓 ∈ 𝐿2 ∖ 𝐿2
−1 ⟹ 𝐻ℏ(𝜔, 𝑓 ) is self-adjoint and

unbounded from below.
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The van Hove model – A perfect Playground

In the infrared regular case, 𝑊ℏ( 𝑖
𝜋ℏ𝜔 𝑓 ) is a unitary operator in the Fock space

(dressing transformation), and

𝑊ℏ( 𝑖
𝜋ℏ𝜔 𝑓 )∗𝐻ℏ(𝜔, 𝑓 )𝑊ℏ( 𝑖

𝜋ℏ𝜔 𝑓 ) = dΓℏ(𝜔) − ‖𝑓 ‖2
𝐿2

−1
.

With an infrared singularity of type I, 𝐻ℏ(𝜔, 𝑓 ) is bounded from below by
KLMN theorem, and no unitary diagonalization is implementable.

With an infrared singularity of type II, 𝐻ℏ(𝜔, 𝑓 ) is self-adjoint by the Nelson
commutator theorem.
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The van Hove model – A perfect Playground

Infrared singularity of type I – refined analysis

The spectral properties of Hamiltonians describing fields interacting with
particles (van Hove, spin-boson, Nelson, Pauli-Fierz,…) have been widely studied
by the mathematical physics community [Ammari, Amour, Arai, Bach,
Ballesteros, Betz, T. Chen, Deckert, Derezinski, Faupin, Fröhlich, C. Gérard,
Griesemer, Hasler, Hinrichs, Hiroshima, Lieb, Lörinczi, Loss, Matte, Minlos,
Møller, Pizzo, Siebert, I.M. Sigal, Spohn, Sasaki, …].

The absence of a Fock ground state for bounded from below massless field
theories is sometimes called infrared catastrophe.

Intuitively, it is due to the fact that the Fock space is ill-suited to describe systems
with truly many particles/excitations, and massless models might have many many
particles, even at low energies (with a mass gap, an excitation cannot have
arbitrarily small energy).
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The van Hove model – A perfect Playground

Fix 𝜔, and fix 𝑓 ∈ 𝐿2
−1 ∖ 𝐿2

−2. Define the regularized van Hove model by

𝐻ℏ(Λ) = dΓℏ(𝜔) + 𝑎∗
ℏ(𝑓Λ) + 𝑎(𝑓Λ)

with
𝑓Λ(𝑘) = 1| ⋅ |≥Λ−1(𝑘) 𝑓 (𝑘) .

Lemma ([Arai 2020])
Let |𝜓Λ

ℏ ⟩⟨𝜓Λ
ℏ | be the ground state of the infrared regular 𝐻ℏ(Λ). Then:

lim
Λ→∞

⟨𝜓Λ
ℏ , dΓℏ(1)𝜓Λ

ℏ ⟩ = ∞

w−lim
Λ→∞

𝜓Λ
ℏ = 0
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The van Hove model – A perfect Playground

Remark
The physical interpretation of the above lemma is the following. The ground state
𝜓∞

ℏ in the infrared singular-I case would be a Fock vector with infinitely many field’s
excitations: the so-called soft photons , infinitely many excitations with a very small
energy (making the total energy bounded from below). However, by construction
Fock vectors have smaller and smaller probability of having more and more
particles, therefore 𝜓∞

ℏ has zero amplitude of transition to any Fock vector.
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The van Hove model – A perfect Playground

The classical van Hove model
𝐸(𝑧) = ⟨𝑧, 𝜔𝑧⟩2 + 2Re⟨ 𝑓 , 𝑧⟩2

In the form above, the natural domain of definition of 𝐸 seems to be 𝑧 ∈ 𝐿2 ∩ 𝐿2
1

(with 𝑓 ∈ 𝐿2, however 𝐸 is bounded from below only if 𝑓 ∈ 𝐿2
−1). Therefore, it is

convenient to rewrite 𝐸 as an explicitly bounded from below functional

𝐸(𝑧) = ⟨𝑧, 𝜔𝑧⟩2 + 2Re⟨ 𝑓 /√𝜔, √𝜔𝑧⟩2(= ‖𝑧 + 𝑓 /𝜔‖2
𝐿2

1
− ‖𝑓 ‖2

𝐿2
−1

)

with 𝑓 ∈ 𝐿2
−1 and domain of definition 𝐿2

1 .

Lemma
𝐸 is bounded from below by −‖𝑓 ‖2

𝐿2
−1
, and it has a unique minimizer

𝑧gs = − 𝑓
𝜔

𝑧gs belongs to 𝐿2
1 for any 𝑓 ∈ 𝐿2

−1.
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The van Hove model – A perfect Playground

Remarks
The infrared singularity of type II is both classical and quantum.

The infrared singularity of type I is only quantum! (typical in renormalization)

The classical limit ℏ → 0 shall be “transparent” to the I-infrared singularity.
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The van Hove model – A perfect Playground

The correspondence principle for the van Hove model
(using abstract semiclassical analysis)

We make the following assumption: 𝐿2
−1 ⊂ 𝒮′ . Also, let us define 𝒮ℝ to be the

usual Schwartz space seen as a real vector space. Let us remark that Re⟨ ⋅ , ⋅ ⟩2
makes 𝒮ℝ a real pre-Hilbert space, and Im⟨ ⋅ , ⋅ ⟩2 a real symplectic space.
Finally, let us define 𝒮′

ℝ to be the continuous dual of 𝒮ℝ by means of the
duality bracket Re⟨ ⋅ , ⋅ ⟩2.

Let Φ𝑡 be the Hamiltonian flow on 𝒮′ associated to the Hamiltonian 𝐸. The
Hamilton equation of 𝐸 reads

𝑖𝜕𝑡𝑧 = 𝜔𝑧 + 𝑓 ,

whose solution for an initial datum 𝑧0 is

𝑧(𝑡) = 𝑒−𝑖𝑡𝜔(𝑧0 + 𝑓
𝜔) − 𝑓

𝜔
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The van Hove model – A perfect Playground

The map Φ𝑡 can be split in three maps on 𝒮′: Φ𝑡 = 𝜏−1
𝑓
𝜔

∘ Φ0𝑡 ∘ 𝜏 𝑓
𝜔
, where

𝜏 𝑓
𝜔
is the “phase space translation” by 𝑓

𝜔 ∈ 𝒮′;

Φ0
𝑡 ∈ ℒ(𝒮′) is a linear transformation 𝑧 ↦ 𝑒−𝑖𝑡𝜔𝑧 that preserves ⟨ ⋅ , ⋅ ⟩2, and

therefore it defines by transposition a linear symplectic map
𝜗Φ0𝑡

∶ (𝒮ℝ, Im⟨ ⋅ , ⋅ ⟩2) → (𝒮ℝ, Im⟨ ⋅ , ⋅ ⟩2), acting as 𝜂 ↦ 𝑒𝑖𝑡𝜔𝜂.

A symplectic map on test functions, such as 𝜗Φ0𝑡
induces a *-homomorphism

𝕎ℏ(𝜗Φ0𝑡
) on 𝕎ℏ(𝒮ℝ, Im⟨ ⋅ , ⋅ ⟩2), agreeing with the natural quantization 𝕢ℏ:

𝕎ℏ(𝜗Φ0𝑡
)[𝑊ℏ(𝜂)] = 𝑊ℏ(𝑒𝑖𝑡𝜔𝜂)(“ = ”𝑒𝑖 𝑡

ℏ dΓℏ(𝜔)𝑊ℏ(𝜂)𝑒−𝑖 𝑡
ℏ dΓℏ(𝜔))

On the other hand, it is well known that quantum phase space translations are (uniquely)
implemented by (suitably scaled) Weyl operators. It is thus natural to define, by slight
abuse of notation,

𝕢ℏ(𝜏 𝑓
𝜔

)[𝑊ℏ(𝜂)] = 𝑊ℏ(𝜂)𝑒2𝜋𝑖Re⟨ 𝑓
𝜔 ,𝜂⟩2(“ = ”𝑊ℏ( 1

𝑖𝜋ℏ𝜔 𝑓 )∗𝑊ℏ(𝜂)𝑊ℏ( 1
𝑖𝜋ℏ𝜔 𝑓 ))
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The van Hove model – A perfect Playground

To sum up, we can define a van Hove dynamical map 𝐿ℏ(𝑡) on
𝕎ℏ(𝒮ℝ, Im⟨ ⋅ , ⋅ ⟩2):

𝐿ℏ(𝑡)[𝐴] = 𝕢ℏ(𝜏− 𝑓
𝜔

) ∘ 𝕎ℏ(𝜗Φ0𝑡
) ∘ 𝕢ℏ(𝜏 𝑓

𝜔
)[𝐴]

(“ = ” 𝑒𝑖 𝑡
ℏ 𝐻ℏ(𝜔,𝑓 ) 𝐴 𝑒−𝑖 𝑡

ℏ 𝐻ℏ(𝜔,𝑓 ))

𝐿ℏ(𝑡) induces by transposition a map on 𝜔ℏ ∈ Regℏ(𝒮ℝ, Im⟨ ⋅ , ⋅ ⟩2), with a
very explicit action on the Fourier transform:

̂(𝐿ℏ(𝑡)𝜔ℏ)(𝜂) = 𝜔̂ℏ(𝑒𝑖𝑡𝜔𝜂)𝑒2𝜋𝑖Re⟨ 𝑓
𝜔 ,(𝑒𝑖𝑡𝜔−1)𝜂⟩2
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The van Hove model – A perfect Playground

Egorov Theorem – Propagation of chaos

Theorem 1 (Egorov-type theorem)
Let 𝜔ℏ ∈ Regℏ(𝒮ℝ, Im⟨ ⋅ , ⋅ ⟩2) such that ∃ℏ𝑛 → 0 and 𝔪 ∈ 𝒫cyl(𝒮′

ℝ, 𝒮ℝ) such that
𝜔̂ℏ𝑛 ⟶𝑛→∞ 𝔪̂. Then ∀𝑡 ∈ ℝ,

lim𝑛→∞
̂(𝐿ℏ𝑛(𝑡)𝜔ℏ𝑛) = ̂(Φ𝑡 ∗ 𝔪)

In other words, the following “diagram” is commutative:

𝜔ℏ𝑛 𝜔ℏ𝑛(𝑡)

𝔪 Φ𝑡 ∗ 𝔪

𝐿ℏ𝑛 (𝑡)

ℏ𝑛→0 ℏ𝑛→0

Φ𝑡
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The van Hove model – A perfect Playground

Proof

By 𝜔̂ℏ𝑛 → 𝔪̂, we get

lim𝑛→∞
̂(𝐿ℏ𝑛(𝑡)𝜔ℏ𝑛)(𝜂) = lim𝑛→∞ 𝜔̂ℏ𝑛(𝑒𝑖𝑡𝜔𝜂)𝑒2𝜋𝑖Re⟨ 𝑓

𝜔 ,(𝑒𝑖𝑡𝜔−1)𝜂⟩2

= 𝑚̂(𝑒𝑖𝑡𝜔𝜂)𝑒2𝜋𝑖Re⟨ 𝑓
𝜔 ,(𝑒𝑖𝑡𝜔−1)𝜂⟩2 = ∫

•
𝒮′ 𝑒2𝜋𝑖Re⟨𝑧(𝑡),𝜂⟩2d𝔪(𝑧) = ̂(Φ𝑡 ∗ 𝔪)(𝜂)

□
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The van Hove model – A perfect Playground

Ground state energy and ground states

The van Hove (W*-)dynamical system 𝑡 ↦ 𝐿ℏ(𝑡) has a generator (“ad𝐻ℏ(𝜔, 𝑓 )”)
that can be abstractly defined, as well as its properties like the spectrum, ground
states, KMS (equilibrium) states, …

These of course agree with the concrete van Hove model we defined above in
Fock space. In particular, the ground state energy 𝐸ℏ of the van Hove dynamical
system is given by

𝐸ℏ = −‖𝑓 ‖2
𝐿2

−1
.

The ground state of this dynamical system is unique, and is given by the regular
state 𝜔gs

ℏ ∈ Regℏ(𝒮ℝ, Im⟨ ⋅ , ⋅ ⟩2) with Fourier transform

𝜔̂gs
ℏ (𝜂) = 𝑒− 𝜋2ℏ

2 ‖𝜂‖2
2 𝑒2𝜋𝑖Re⟨− 𝑓

𝜔 ,𝜂⟩2
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The van Hove model – A perfect Playground

!△The algebraic ground state is defined for all sources 𝑓 and dispersion relations
𝜔 such that 𝑓

𝜔 ∈ 𝒮′(ℝ𝑑). In particular, for the I-infrared singular van Hove
model! !△
In the I-infrared singular case, the GNS representation of 𝜔gs

ℏ is non-Fock (it is
inequivalent to the Fock representation), however it can be explicitly embedded
in a Fock space [see Arai 2020].

The idea is that in the non-Fock representation, the vacuum vector Ωℏ
corresponds to 𝜔gs

ℏ and the creation/annihilation/number operators
create/annihilate/count only the non-soft excitations we build on top of the
ground state.
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Theorem 2 (Semiclassical GSE and GS)
Let 𝐿ℏ(𝑡) be the van Hove dynamical system. Then:

lim
ℏ→0

𝐸ℏ = 𝐸0 = 𝐸(𝑧gs) = −‖𝑓 ‖2
𝐿2

−1

lim
ℏ→0

𝜔gs
ℏ = 𝛿𝑧gs

Proof.
Step one is very difficult so let me skip the proof;
Almost as difficult is to prove that

lim
ℏ→0

𝜔̂gs
ℏ (𝜂) = lim

ℏ→0
𝑒− 𝜋2ℏ

2 ‖𝜂‖2
2 𝑒2𝜋𝑖Re⟨− 𝑓

𝜔 ,𝜂⟩2 = 𝑒2𝜋𝑖Re⟨− 𝑓
𝜔 ,𝜂⟩2

= ∫
•

𝒮′ 𝑒2𝜋𝑖⟨𝑧,𝜂⟩2d𝛿𝑧gs(𝑧) = ∫𝒮′ 𝑒2𝜋𝑖⟨𝑧,𝜂⟩2d𝛿𝑧gs(𝑧) = ̂𝛿𝑧gs(𝜂)

□
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The van Hove model – A perfect Playground

The quantization is natural, but is it robust?

For the van Hove model, quantization is very robust, in fact despite the possible
appearance of quantum infrared singularities, the correspondence principle holds
– irrespective of them – for both the dynamics and the ground state properties.
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Not so perfect playgrounds – some m(M)L of sweat required

Not so perfect playgrounds – some m(M)L of sweat
required
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Not so perfect playgrounds – some m(M)L of sweat required

More realistic models of particle-field interaction, different
scalings

“Pure” semiclassical field theories (ℏ → 0):
Schrödinger (Coherent states – Theorem 1) [Hepp 1974, Ginibre-Velo 1979]

𝑃(𝜑)2 model (Schwinger functions in the limit ℏ → 0) [Eckmann 1977]

Schrödinger (Wigner measures – Theorem 1)
[Ammari-Breteaux-M.F.-Liard-Nier-Pawilowski-Rouffort 2008-19]

𝑃(𝜑)2 model (Coherent states – Theorem 1) [Ammari-Zerzeri 2012]

Schrödinger (de Finetti measures – Theorem 1&2) [Lewin-Nam-Rougerie 2014-21]

Bose-Hubbard model on a graph (KMS states – Theorem 2.5)
[Ammari-Farhat-Petrat-Ratsimanetrimanana 2021-24]

van Hove model (Wigner measures – Theorem 1&2) [M.F.-Fratini upcoming]
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Not so perfect playgrounds – some m(M)L of sweat required

Systems of many bosons (𝑁 ∼ ℏ−1) coupled with a semiclassical field (ℏ → 0):
Nelson model with cutoff (Coherent states – Theorem 1) [M.F. 2013]

Nelson model with and without cutoff (Wigner measures – Theorem 1&2)
[Ammari-M.F. 2014-17]

Nelson model with and without cutoff (𝛼-method/Bogoliubov+Coherent states –
Theorem 1) [M.F.-Lampart-Leopold-Mitrouskas-Petrat 2019-23]

Pauli-Fierz model (𝛼-method+Coherent states – Theorem 1) [M.F.-Leopold-Pickl
2020-23]
Scattering for the Nelson model (Wigner measures – Theorem 1.5)
[Ammari-M.F.-Olivieri 2023]

Systems of semiclassical particles ℏ → 0 coupled with a semiclassical field (ℏ → 0):
Pauli-Fierz model (Wigner measures – Theorem 1) [Ammari-M.F.-Hiroshima 2022]

Nelson model (Wigner measures – Theorem 1) [Farhat 2024]
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Not so perfect playgrounds – some m(M)L of sweat required

Bipartite systems only a part semiclassical (“Quasi-classical limits”, ℏ → 0):

Nelson and Pauli-Fierz models, with and without cutoff (Wigner measures –
Theorem ∑100

𝑛=0 2−𝑛) [Breteaux-Correggi-M.F.-Olivieri-Faupin 2018-24]

Spin-Boson, Pauli-Fierz models (different take on semiclassical analysis – Theorem
1+) [Amour-Jager-Khodja-Lascar-Nourrigat 2013-2020]

Nelson, Polaron, Pauli-Fierz models (Wigner measures – Theorem 1&2)
[Correggi-M.F.-Olivieri 2023]

Nelson, Polaron (Wigner measures & Concentration compactness – Theorem 2)
[M.F.-Olgiati-Rougerie 2023]

Polaron with point interaction (Coherent states – Theorem 1)
[Carlone-Correggi-M.F.-Olivieri 2021]

Spin-Boson model (Wigner measures – Theorem 1 and decoherence)
[Correggi-M.F.-Fantechi-Merkli 2023-24]

Caldeira-Leggett model (Wigner measures – Theorem 1&2)
[Correggi-M.F.-Fantechi upcoming]
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Not so perfect playgrounds – some m(M)L of sweat required

Why all the sweat?

The quantum and classical evolutions for the models above
( −{van Hove , spin-boson}) are not trivial nor explicit, and their generators are
not diagonalizable, the quantum ground state energy depends on ℏ.
The (Ammari-Nier) strategy for proving Theorem 1 is the following:

Write the evolution of the expectation of the Weyl operator as an integral (Duhamel)
equation;

Take the limit ℏ → 0 of such equation, to obtain a classical transport (Liouville)
equation for the Wigner measures;

In order to do that, one shall prove that it is possible to extract a common
subsequence ℏ𝑛 → 0 for convergence of 𝜔ℏ(𝑡) to 𝜇𝑡 at all times (using uniform
number operator/Hamiltonian bounds at all times);

One studies the uniqueness properties of the classical Liouville equation, under the a
priori regularity properties of the Wigner measure evolution 𝑡 ↦ 𝜇𝑡 .
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Not so perfect playgrounds – some m(M)L of sweat required

The (Ammari) strategy for proving Theorem 2 is the following:

Energy upper bound (easy): coherent trial states (states of minimal uncertainty –
Wigner measures are deltas!);

Energy lower bound: take a minimizing sequence 𝜓ℏ, and take the liminf of

⟨𝜓ℏ, 𝐻ℏ𝜓ℏ⟩ < 𝐸ℏ + oℏ(1) ;

The convergence of the ground state uses the same strategy as the energy lower
bound.
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Thank you for the attention (II)

Marco Falconi (PoliMi) QFTℏ→0 Metz; June 2024. 29 / 29


	Bohr's correspondence principle in physics
	The van Hove model – A perfect Playground
	Not so perfect playgrounds – some m(M)L of sweat required
	Thank you for the attention (II)

