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What is (abstract) Quantization?

“First quantization is a mystery, but second quantization is a functor”
(E. Nelson)
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What is (abstract) Quantization?

Fields are Rough

In field theories, it is often necessary – or natural – to consider canonical observables
(the fields themselves) that are not smooth:

The energy of the electromagnetic field is given by

∫Ω(E2(𝑥) + B2(𝑥))d𝑥 ,

a quantity naturally related to the Lebesgue space 𝐿2(Ω, d𝑥) ⊂ 𝒮′(Ω).

A local quantum (scalar) field 𝜑̂(𝑥) makes sense (mathematically) only as a
so-called operator-valued distribution.

Marco Falconi (PoliMi) QFTℏ→0 Metz; June 2024. 4 / 29



What is (abstract) Quantization?

Test Functions

To study rough functions, we need to test their action on smooth functions:

Let us denote by 𝒯 the (real) vector space of test functions.

As in finite dimensional classical mechanics, we shall endow the space of fields
with a symplectic structure.

!△Fields are rough !△
The symplectic structure is given to test functions only (as in classical mechanics,
it involves the multiplication of canonical observables).

Let us denote by 𝜍 ∶ 𝒯 × 𝒯 → ℝ a non-degenerate, bilinear, antisymmetric
form on 𝒯.

(𝒯, 𝜍) ∈ Sympℝ is the symplectic space of test functions

Marco Falconi (PoliMi) QFTℏ→0 Metz; June 2024. 5 / 29



What is (abstract) Quantization?

The functor of classical observables

Given the space of test functions 𝒯, let 𝒯⋆ be your favorite (and “big enough”)
dual space of (classical) fields.

If 𝒯 has no additional structure, the natural choice is 𝒯⋆ = 𝒯∗ the algebraic dual.
If 𝒯 ∈ TVSℝ is a topological vector space, another natural choice is 𝒯⋆ = 𝒯′ the
continuous dual (the space of distributions).

For all our purposes, this freedom in the choice of the space of fields 𝒯⋆ is
fictitious: the choice of test functions 𝒯 unambiguously determines the physical
output of our semiclassical theory.

𝒯 determines a set of Fourier characters {𝛾𝑓 }𝑓 ∈𝒯 on 𝒯⋆ :

𝛾𝑓 ∶ 𝒯⋆ ⟶ 𝑈(1)
𝑇 ⟼ 𝑒2𝜋𝑖⟨𝑇, 𝑓 ⟩
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What is (abstract) Quantization?

From characters, one can build trigonometric polynomials:

Π𝑛(𝑇) =
𝑛

∑
𝑗=1

𝜆𝑗𝛾𝑓𝑗 (𝑇) .

The closure of trigonometric polynomials with respect to the uniform norm

‖Π𝑛‖∞ ∶= sup
𝑇∈𝒯⋆

|Π𝑛(𝑇)|

is called the space of Almost Periodic functions 𝔸ℙ(𝒯) on 𝒯⋆ generated by 𝒯 .
With the uniform norm and the pointwise product, 𝔸ℙ(𝒯) is an abelian unital
C*-algebra (𝛾0 = id), generated by the characters:

𝔸ℙ(𝒯) = C*{𝛾𝑓 , 𝑓 ∈ 𝒯} .
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What is (abstract) Quantization?

Definition (The functor of classical observables 𝕎0)
The functor of classical observables 𝕎0 ∶ Sympℝ → C∗alg is defined by

𝕎0(𝒯, 𝜍) = 𝔸ℙ(𝒯) ,

and given a symplectic linear morphism 𝜗 ∶ (𝒯, 𝜍) → (𝒰, 𝜁),

𝕎0(𝜗)[𝛾𝑓 ] = 𝛾𝜗𝑓

that extends to a *-homomorphism by linearity.
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What is (abstract) Quantization?

Remarks

These observables are not “many” (the physical energies, or canonical variables
themselves are not included), but enough to make a meaningful quantization
(and semiclassical analysis).

The symplectic form does not play a role in defining classical observables (also in
standard classical mechanics, it comes into play when one looks at the dynamics),
however it is necessary to define quantum observables that are consistent with the
classical limit.

Marco Falconi (PoliMi) QFTℏ→0 Metz; June 2024. 9 / 29



What is (abstract) Quantization?

The functor of quantum observables

Classical observables form an abelian C*-algebra, while quantum observables
shall form a non-abelian C*-algebra (that by the GNS construction is always
concretely represented as an algebra of operators in a Hilbert space).

Let us deform the product between abelian characters 𝛾𝑓 , i.e.

𝛾𝑓 𝛾𝑔 = 𝛾𝑓 +𝑔 ,

to a non-abelian one. How shall we do it? Let us introduce a
semiclassical parameter ℏ such that the quantum Fourier characters {𝑊ℏ(𝑓 )}𝑓 ∈𝒯
satisfy the composition rule

𝑊ℏ(𝑓 )𝑊ℏ(𝑔) = 𝑊ℏ(𝑓 + 𝑔)𝛼ℏ(𝑓 , 𝑔) ,

for some suitable 𝛼ℏ(𝑓 , 𝑔). Rules for 𝛼ℏ:
𝛼ℏ(𝑓 , 𝑔) ≠ 𝛼ℏ(𝑔, 𝑓 ) (non-abelian product)
𝛼ℏ(𝑓 , 𝑔) = 1 + oℏ(1) (ℏ-deformation)
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What is (abstract) Quantization?

P.A.M. Dirac: «A Quantum commutator is approximated, at first order in 𝑖ℏ, by
the corresponding classical Poisson bracket»

H. Weyl: «Then we shall choose 𝛼ℏ(𝑓 , 𝑔) = 𝑒−𝑖𝜋2ℏ𝜍(𝑓 ,𝑔)»

The Weyl operators (noncommutative characters of quantum mechanics) are thus
defined as the collection {𝑊ℏ(𝑓 )}𝑓 ∈𝒯 satisfying:

𝑊ℏ(𝑓 ) ≠ 0
𝑊ℏ(𝑓 )∗ = 𝑊ℏ(−𝑓 )
𝑊ℏ(𝑓 )𝑊ℏ(𝑔) = 𝑊ℏ(𝑓 + 𝑔)𝑒−𝑖𝜋2ℏ𝜍(𝑓 ,𝑔)

From their definition, it follows that 𝑊ℏ(0) = id, 𝑊ℏ(𝑓 )∗ = 𝑊ℏ(𝑓 )−1,
‖𝑊ℏ(𝑓 )‖ = 1.
Let us define the Weyl algebra of Canonical Commutation Relations
(CCR-algebra)

ℂℂℝℏ(𝒯, 𝜍) = C*{𝑊ℏ(𝑓 ) , 𝑓 ∈ 𝒯} .
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What is (abstract) Quantization?

Definition (The functor of quantum observables 𝕎ℏ [I.E. Segal 59-61])
The functor of quantum observables 𝕎ℏ ∶ Sympℝ → C∗alg is defined by

𝕎ℏ(𝒯, 𝜍) = ℂℂℝℏ(𝒯, 𝜍) ,

and given a symplectic linear morphism 𝜗 ∶ (𝒯, 𝜍) → (𝒰, 𝜁),

𝕎ℏ(𝜗)[𝑊ℏ(𝑓 )] = 𝑊ℏ(𝜗𝑓 )

that extends to a *-homomorphism by linearity.
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What is (abstract) Quantization?

Quantization

Let us define a natural transformation 𝕢ℏ ∶ 𝕎0 → 𝕎ℏ as follows:
If (𝒯, 𝜍) ∈ Sympℝ, the component 𝕢𝒯

ℏ ∶ 𝕎0(𝒯, 𝜍) → 𝕎ℏ(𝒯, 𝜍) of the natural
transformation is defined by its action on trigonometric polynomials:

𝕢𝒯
ℏ (∑𝑗 𝜆𝑗𝛾𝑓𝑗 ) = ∑𝑗 𝜆𝑗𝑊ℏ(𝑓𝑗) .

Given 𝜗 ∶ (𝒯, 𝜍) → (𝒰, 𝜁), the diagram

𝕎0(𝒯, 𝜍) 𝕎ℏ(𝒯, 𝜍)

𝕎0(𝒰, 𝜁) 𝕎ℏ(𝒰, 𝜁)

𝕢𝒯
ℏ

𝕎0(𝜗) 𝕎ℏ(𝜗)

𝕢𝒰
ℏ

is clearly commutative, so 𝕢ℏ is a natural transformation indeed.
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What is (abstract) Quantization?

Definition (Abstract Weyl quantization)
Given an almost periodic classical field observable 𝑎 ∶ 𝒯⋆ → ℂ, its abstract Weyl
quantization is given by 𝕢𝒯

ℏ (𝑎).
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What is (abstract) Quantization?

Remarks

The rule of (abstract) Weyl quantization is very simple: substitute each 𝒯-Fourier
character with its quantum deformation, i.e. a Weyl operator.

Quantum mechanical case: 𝒯 = 𝒯⋆ = ℝ2𝑑 (with the canonical symplectic
form).

Any function 𝑎 ∈ ℱ−1𝐿1(ℝ2𝑑 , d𝑥) ⊂ 𝐶0(ℝ2𝑑) also belongs to 𝔸ℙ(ℝ2𝑑). The
function 𝛼𝑘(⋅) = ̂𝑎(𝑘)𝑒2𝜋𝑖𝑘⋅ is Bochner integrable with respect to d𝑘:

‖𝛼𝑘‖∞ = sup
𝑥∈ℝ2𝑑

|𝛼𝑘(𝑥)| = | ̂𝑎(𝑘)| , ∫
ℝ2𝑑 ‖𝛼𝑘‖∞d𝑘 = ‖ ̂𝑎‖1 ;

therefore, there exist a Cauchy sequence – in the 𝐿∞(ℝ2𝑑 , d𝑥) norm – of
trigonometric polynomials

𝑠𝑛(⋅) = ∑
𝑗

𝜆(𝐸𝑗) ̂𝑎(𝑘𝑗)𝛾𝑘𝑗 (⋅)

such that lim𝑛→∞ 𝑠𝑛(⋅) = 𝑎(⋅), thus proving that 𝑎 ∈ 𝔸ℙ(ℝ2𝑑).
𝕢ℝ2𝑑

ℏ (𝑎) = ∫
ℝ2𝑑 ̂𝑎(𝑘)𝑊ℏ(𝑘)d𝑘 – the standard Weyl quantization formula (for symbols in

ℱ−1𝐿1).
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What is (abstract) Quantization?

An answer to Ed

Ed:
«First quantization is a mystery, but second quantization is a functor»

Me:
«Second quantization is a functor, but quantization is a natural transformation»
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Abstract Semiclassical Analysis
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Abstract Semiclassical Analysis

Classical states

Let us denote the cone of all algebraic states on 𝕎0(𝒯, 𝜍) by 𝕎0(𝒯, 𝜍)′
+,1.

The regular states Reg0(𝒯, 𝜍) ⊂ 𝕎0(𝒯, 𝜍)′
+,1 are defined as follows:

𝜔0 ∈ Reg0(𝒯, 𝜍) iff ∀𝑓 ∈ 𝒯 , 𝜆 ↦ 𝜔0(𝛾𝜆 𝑓 ) is a continuous map

Lemma
There is a bijection between regular states Reg0(𝒯, 𝜍) and cylindrical probabilities 𝒫cyl(𝒯⋆, 𝒯).
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Abstract Semiclassical Analysis

What is a cylindrical probability?
The 𝜎-algebra of cylinders Σ(𝒯⋆, 𝒯) is the initial 𝜎-algebra, i.e. the smallest
𝜎-algebra that makes all elements of 𝒯 (seen as functions on 𝒯∗) measurable.
(In many concrete examples, e.g. if 𝒯∗ is a separable Banach space, the 𝜎-algebra
of cylinders coincides with the Borel 𝜎-algebra)

A cylindrical probability 𝔪 ∈ 𝒫cyl(𝒯⋆, 𝒯) is a finitely additive measure on
Σ(𝒯⋆, 𝒯) with 𝔪(𝒯⋆) = 1, that is 𝜎-additive when restricted to Σ(𝒯∗, 𝐹) with
𝐹 any finite dimensional subspace of 𝒯.

Theorem (Bochner)
The Fourier transform is a bijection between 𝒫cyl(𝒯⋆, 𝒯) and the functions 𝒢 ∶ 𝒯 → ℂ
satisfying the following properties:

𝒢(0) = 1;
∑𝑗,𝑘 𝛼̄𝑘𝛼𝑗𝒢(𝑓𝑗 − 𝑓𝑘) ≥ 0;
𝒢∣𝐹 is continuous for all 𝐹 finite dimensional subspace of 𝒯.
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Abstract Semiclassical Analysis

Proof of the Lemma
Let 𝜔0 ∈ Reg0(𝒯, 𝜍). Then 𝒢𝜔0(𝑓 ) ∶= 𝜔0(𝛾𝑓 ) satisfies:

𝒢𝜔0 (0) = 1;
∑𝑗,𝑘 𝛼̄𝑘𝛼𝑗𝒢𝜔0 (𝑓𝑗 − 𝑓𝑘) = 𝜔0((∑𝑘 𝛼𝑘𝛾𝑓𝑘 )

∗
(∑𝑗 𝛼𝑗𝛾𝑓𝑗 )) ≥ 0;

𝒢𝜔0 ∣
𝐹
is continuous for all finite dimensional 𝐹 ⊂ 𝒯 (thanks to the regularity of 𝜔0).

Then by Bochner theorem Reg0(𝒯, 𝜍) injects into 𝒫cyl(𝒯⋆, 𝒯).
Now, let us consider 𝔪 ∈ 𝒫cyl. Any trigonometric polynomial
Π𝑛(𝑇) = ∑𝑛

𝑗=1 𝜆𝑗𝑒2𝜋𝑖⟨𝑇,𝑓𝑗⟩ is a Σ(𝒯⋆, span{𝑓1, … , 𝑓𝑛})-measurable function,
and since 𝔪 restricted to Σ(𝒯⋆, span{𝑓1, … , 𝑓𝑛}) is a probability measure, we can
define the functional

𝜔0,𝔪(Π𝑛) = ∫
•

𝒯⋆ Π𝑛(𝑇)d𝔪(𝑇)(=
𝑛

∑
𝑗=1

𝜆𝑗𝔪̂(𝑓𝑗)) ;

and easily check that it is positive, linear and bounded, with 𝜔0,𝔪(id) = 1.
Therefore, since trigonometric polynomials are dense in 𝕎0(𝒯, 𝜍), 𝜔0,𝔪
extends uniquely to a regular state (regularity follows from the continuity of 𝔪̂).

□
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Abstract Semiclassical Analysis

Quantum states
Let us denote the cone of all algebraic states on 𝕎ℏ(𝒯, 𝜍) by 𝕎ℏ(𝒯, 𝜍)′

+,1.

The regular states Regℏ(𝒯, 𝜍) ⊂ 𝕎ℏ(𝒯, 𝜍)′
+,1 are defined as follows:

𝜔ℏ ∈ Regℏ(𝒯, 𝜍) iff ∀𝑓 ∈ 𝒯 , 𝜆 ↦ 𝜔ℏ(𝑊ℏ(𝜆 𝑓 )) is a continuous map

Let us define the noncommutative Fourier transform of a quantum state as

𝜔̂ℏ(𝑓 ) ∶= 𝜔ℏ(𝑊ℏ(𝑓 )) .

Theorem (Noncommutative Bochner [I.E. Segal 61])
The noncommutative Fourier transform is a bijection between Regℏ(𝒯, 𝜍) and the functions
𝒢ℏ ∶ 𝒯 → ℂ satisfying the following properties:

𝒢ℏ(0) = 1;
∑𝑗,𝑘 𝛼̄𝑘𝛼𝑗𝒢ℏ(𝑓𝑗 − 𝑓𝑘)𝑒𝑖𝜋2ℏ𝜍(𝑓𝑗 ,𝑓𝑘) ≥ 0;
𝒢ℏ∣𝐹 is continuous for all 𝐹 finite dimensional subspace of 𝒯.
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Abstract Semiclassical Analysis

Wigner measures
Let us denote by 𝔉(𝒯, 𝜍) the set of all finite dimensional symplectic subspaces of
(𝒯, 𝜍), and define 𝐶0,cyl(𝒯⋆, 𝒯) ⊂ 𝔸ℙ(𝒯) to be the subalgebra
⋃𝐹∈𝔉(𝒯,𝜍) ℱ−1𝐿1(𝐹), where the closure is intended in the uniform norm (the
C*-norm of 𝔸ℙ(𝒯)).

Theorem (Cylindrical Riesz-Markov)
Let ℳcyl(𝒯⋆, 𝒯) be the set of all positive cylindrical measures, and ℳℂ

cyl(𝒯⋆, 𝒯) the set of all
complex cylindrical measures. Then

(𝐶0,cyl(𝒯⋆, 𝒯))
′

≅ ℳℂ
cyl(𝒯⋆, 𝒯) ;

and
(𝐶0,cyl(𝒯⋆, 𝒯))

′
+ ≅ ℳcyl(𝒯⋆, 𝒯) .

Furthermore, if 𝜔0 is a positive continuous linear functional with ‖𝜔0‖𝔸ℙ(𝒯)′ = 𝑚, then 𝜔0 ≅ 𝔪
with 𝔪(𝒯⋆) = 𝑚.
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Abstract Semiclassical Analysis

Now, let us fix 𝐹 ∈ 𝔉(𝒯, 𝜍), and a symbol 𝑎(𝑇) = ∫𝐹 ̂𝑎𝐹(𝑘)𝛾𝑘(𝑇)d𝑘,
̂𝑎𝐹 ∈ 𝒮(𝐹). Its quantization 𝕢𝒯

ℏ (𝑎) reads

𝕢𝒯
ℏ (𝑎) = ∫𝐹 ̂𝑎𝐹(𝑘)𝑊ℏ(𝑘)d𝑘 .

Theorem (Abstract sharp Gårding inequality)
Let 𝑎 ∶ 𝒯⋆ → ℝ+ be a positive symbol such that there exists 𝐹 ∈ 𝔉(𝒯, 𝜍) and ̂𝑎𝐹 ∈ 𝒮(𝐹)
such that 𝑎(𝑇) = ∫𝐹 ̂𝑎𝐹(𝑘)𝛾𝑘(𝑇)d𝑘. Then there exists 𝐶𝐹 > 0

𝕢𝒯
ℏ (𝑎) ≥ −𝐶𝐹ℏ .

Remark

The stronger Fefferman-Phong inequality

𝕢𝒯
ℏ (𝑎) ≥ −𝐶𝐹ℏ2

actually holds, but the sharp Gårding is enough for our purposes.
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Abstract Semiclassical Analysis

Theorem (Existence of cylindrical Wigner measures [Ammari-Nier 08,
M.F. 18])

Let 𝜔ℏ ∈ Regℏ(𝒯, 𝜍). Then there exist

a generalized sequence ℏ𝛽 → 0,
a cylindrical measure 𝔪 ∈ ℳcyl(𝒯⋆, 𝒯) with 0 ≤ 𝔪(𝒯⋆) ≤ 1 – called a Wigner
measure for 𝜔ℏ –

such that:

for all 𝑎 such that there exists 𝐹 ∈ 𝔉(𝒯) and ̂𝑎𝐹 ∈ 𝒮(𝐹) such that
𝑎(𝑇) = ∫𝐹 ̂𝑎𝐹(𝑘)𝛾𝑘(𝑇)d𝑘, we have

lim
ℏ𝛽→0

𝜔ℏ𝛽(𝕢𝒯
ℏ𝛽

(𝑎)) = ∫
•

𝒯⋆ 𝑎(𝑇)d𝔪(𝑇)(= ∫𝐹 ̂𝑎𝐹(𝑘)𝔪̂(𝑘)d𝑘) .
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Abstract Semiclassical Analysis

Remark
!△The total mass of a Wigner measure 𝔪 may be < 1 (even zero!) !△

This is a well-known fact also in finite dimensional standard semiclassical analysis
(and it has physical implications).

We would like to have no loss of mass (and sufficient conditions for it to be
ensured), thus obtaining Regℏ(𝒯, 𝜍) ∋ 𝜔ℏ𝛽 ⟶ 𝜔0 ∈ Reg0(𝒯, 𝜍).
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Abstract Semiclassical Analysis

Proof of the theorem

Let us consider the functional 𝔒ℏ ∶ 𝑎 ↦ 𝜔ℏ(𝕢𝒯
ℏ (𝑎)), for all

𝑎(𝑇) = ∫𝐹 ̂𝑎𝐹(𝑘)𝛾𝑘(𝑇)d𝑘. 𝔒ℏ is linear and bounded (with respect to the uniform
norm of 𝑎). Since 𝒮(𝐹) is dense in 𝐿1(𝐹), 𝔒ℏ is a densely defined bounded and
linear functional on 𝐶0,cyl(𝒯⋆, 𝒯) and thus it extends uniquely to

𝔒ℏ ∈ (𝐶0,cyl(𝒯⋆, 𝒯))
′
.

{𝔒ℏ , ℏ ∈ (0, 1)} is relatively compact in the weak-* topology, so by
Banach-Alaoglu there is a generalized sequence ℏ𝛽 → 0 and a complex
cylindrical measure 𝔪 ∈ ℳℂ

cyl(𝒯⋆, 𝒯) such that 𝔒ℏ𝛽 → 𝔪 in the weak-*
topology.

It remains to prove that 𝔪 is positive. This is an immediate consequence of the
sharp Gårding inequality.

□
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Abstract Semiclassical Analysis

The convergence of Fourier transforms

Lemma
Let 𝜔ℏ ∈ Regℏ(𝒯, 𝜍) be such that there exists ℏ𝛽 → 0 and 𝜔0 ∈ Reg0(𝒯, 𝜍) such that,
pointwise, 𝜔̂ℏ𝛽 ⟶

ℏ𝛽→0
𝜔̂0. Then 𝔪𝜔0 ∈ 𝒫cyl(𝒯⋆, 𝒯) is a Wigner measure of 𝜔ℏ with no loss

of mass.

Proof.

lim
ℏ𝛽→0

𝜔ℏ𝛽(𝕢𝒯
ℏ𝛽

(𝑎)) = lim
ℏ𝛽→0

∫𝐹 ̂𝑎𝐹(𝑘)𝜔̂ℏ𝛽(𝑘)d𝑘 = ∫𝐹 ̂𝑎𝐹(𝑘)𝑚̂𝜔0(𝑘)d𝑘

by dominated convergence.
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Abstract Semiclassical Analysis

Are cylindrical measures truly the classical states?

Can’t we restrict to 𝒫(𝒯⋆, Σ(𝒯⋆, 𝒯))?

No!

Lemma ([M.F. 18])
𝒫cyl(𝒯⋆, 𝒯) (also ℳcyl(𝒯⋆, 𝒯)≤1) is included in the set of all possible Wigner measures: for
any cylindrical probability 𝔪 ∈ 𝒫cyl(𝒯⋆, 𝒯) there exists a regular state 𝜔ℏ,𝔪 ∈ Regℏ(𝒯, 𝜍)
such that, pointwise, 𝜔̂ℏ,𝔪 ⟶

ℏ→0
𝔪̂.

Remark
Interacting Gibbs measures for nonlinear PDEs (e.g. Hartree) are cylindrical
probabilities, very useful to study rough solutions (see Bourgain, Tzvetkov, Oh, …).

Such measures can be obtained as the Wigner measures of quantum Gibbs states of
(non-relativistic, interacting) QFTs [Fröhlich-Knowles-Schlein-Sohinger 17-22,
Lewin-Nam-Rougerie 15-21, Sohinger-Rout 23].

Marco Falconi (PoliMi) QFTℏ→0 Metz; June 2024. 28 / 29



Abstract Semiclassical Analysis

Are cylindrical measures truly the classical states?

Can’t we restrict to 𝒫(𝒯⋆, Σ(𝒯⋆, 𝒯))? No!

Lemma ([M.F. 18])
𝒫cyl(𝒯⋆, 𝒯) (also ℳcyl(𝒯⋆, 𝒯)≤1) is included in the set of all possible Wigner measures: for
any cylindrical probability 𝔪 ∈ 𝒫cyl(𝒯⋆, 𝒯) there exists a regular state 𝜔ℏ,𝔪 ∈ Regℏ(𝒯, 𝜍)
such that, pointwise, 𝜔̂ℏ,𝔪 ⟶

ℏ→0
𝔪̂.

Remark
Interacting Gibbs measures for nonlinear PDEs (e.g. Hartree) are cylindrical
probabilities, very useful to study rough solutions (see Bourgain, Tzvetkov, Oh, …).

Such measures can be obtained as the Wigner measures of quantum Gibbs states of
(non-relativistic, interacting) QFTs [Fröhlich-Knowles-Schlein-Sohinger 17-22,
Lewin-Nam-Rougerie 15-21, Sohinger-Rout 23].

Marco Falconi (PoliMi) QFTℏ→0 Metz; June 2024. 28 / 29



Abstract Semiclassical Analysis

Are cylindrical measures truly the classical states?

Can’t we restrict to 𝒫(𝒯⋆, Σ(𝒯⋆, 𝒯))? No!

Lemma ([M.F. 18])
𝒫cyl(𝒯⋆, 𝒯) (also ℳcyl(𝒯⋆, 𝒯)≤1) is included in the set of all possible Wigner measures: for
any cylindrical probability 𝔪 ∈ 𝒫cyl(𝒯⋆, 𝒯) there exists a regular state 𝜔ℏ,𝔪 ∈ Regℏ(𝒯, 𝜍)
such that, pointwise, 𝜔̂ℏ,𝔪 ⟶

ℏ→0
𝔪̂.

Remark
Interacting Gibbs measures for nonlinear PDEs (e.g. Hartree) are cylindrical
probabilities, very useful to study rough solutions (see Bourgain, Tzvetkov, Oh, …).

Such measures can be obtained as the Wigner measures of quantum Gibbs states of
(non-relativistic, interacting) QFTs [Fröhlich-Knowles-Schlein-Sohinger 17-22,
Lewin-Nam-Rougerie 15-21, Sohinger-Rout 23].

Marco Falconi (PoliMi) QFTℏ→0 Metz; June 2024. 28 / 29



Abstract Semiclassical Analysis

Are cylindrical measures truly the classical states?

Can’t we restrict to 𝒫(𝒯⋆, Σ(𝒯⋆, 𝒯))? No!

Lemma ([M.F. 18])
𝒫cyl(𝒯⋆, 𝒯) (also ℳcyl(𝒯⋆, 𝒯)≤1) is included in the set of all possible Wigner measures: for
any cylindrical probability 𝔪 ∈ 𝒫cyl(𝒯⋆, 𝒯) there exists a regular state 𝜔ℏ,𝔪 ∈ Regℏ(𝒯, 𝜍)
such that, pointwise, 𝜔̂ℏ,𝔪 ⟶

ℏ→0
𝔪̂.

Remark
Interacting Gibbs measures for nonlinear PDEs (e.g. Hartree) are cylindrical
probabilities, very useful to study rough solutions (see Bourgain, Tzvetkov, Oh, …).

Such measures can be obtained as the Wigner measures of quantum Gibbs states of
(non-relativistic, interacting) QFTs [Fröhlich-Knowles-Schlein-Sohinger 17-22,
Lewin-Nam-Rougerie 15-21, Sohinger-Rout 23].

Marco Falconi (PoliMi) QFTℏ→0 Metz; June 2024. 28 / 29



Thank you for the attention (I)
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