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The problem that I would like to consider is

the following{
1

i
∂t +HN

}
ψ = 0 ; ψ(t = 0) := ψ0

where the Hamiltonian is

HN := −
N∑
j=1

∆xj +
1

N

∑
j<k

vN(|xj − xk|)

The potential vN has the form

vN(·) := N3βv(Nβ·) , 0 ≤ β ≤ 1

wecall β = 1 the critical case
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Assumptions on interacting potential

• I will assume that v ≥ 0 is radial smooth,

bounded and decaying fast enough at spatial

infinity so that v ∈ L1. An extra assumption

later will be v′ ≤ 0.

ψ(t, x1, . . . xN) wave− function

Bosons means

ψ(t, xσ(1), . . . xσ(N)) = ψ(t, x1 . . . xN)

for all σ : {1,2 . . . N} 7→ {1,2 . . . N}
permutations

Evolution preserves this property. σ commutes

with HN . Assumptions on v

v ∈ L∞ ∩ L1

v(r) ≥ 0 , v′(r) ≤ 0

also we assume v is smooth. L1 and positivity

are needed the rest are for convenience.
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• Solution :

ψ(t) = e−itHNψ0

ψ0 initial state

We would like to understand the evolution

under special circumstances, meaning data of

the form

ψ0(x1 . . . xN) ≈
N∏
j=1

φ0(xj)

Guess :

ψ(t, x1 . . . xN) ≈
N∏
j=1

φ(t, xj) ?

φ(t, x) mean field (refer to as condensate)

Can this be true? Can I write an equation for

φ(t, x) (refer to as mean field evolution).
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BBGKY Hierarchy : Marginals

γN,k(t, x1 . . . xk; y1 . . . yk) =∫
dzk+1 . . . dzN{
ψ(t, y1 . . . yk; zk+1, . . . zN)ψ(t, x1 . . . xk; zk+1 . . . zN)

}
They satisfy the system of coupled equations

1

i
∂tγN,k −

[
∆, γN,k

]
+
[
BN , γN,k+1

]
= 0 k = 1,2 . . . N

and letting N →∞ γN,k → γk
1

i
∂tγk −

[
∆, γk

]
+
[
B, γN,k+1

]
= 0 k = 1,2 . . .

1

i
∂tφ−∆φ+ g|φ|2φ = 0 closure !

REF: Spohn, (Golse, Bardos) and Elgart, Er-
dos, Schlein, Yau in a series of papers, Klain-
erman and Machedon (uniqueness of the hier-
archy).

More recent work, T. Chen, N. Parvolvic, N.
Tzirakis.

X. Chen, J. Holmer, their work inspired ours.
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Cubic NLS, comments :

The mean field must satisfy the cubic NLS

(also called Gross-Pitaevskii)

1

i
∂tφ−∆φ+ g|φ|2φ = 0

g =
∫
v if 0 < β < 1

g = 8πa if β = 1

a = scattering length

Scattering length a is(
−∆ +

1

2
v
)
f = 0

f ∼ 1−
a

|x|
for large |x|

If v > 0 then g > 0 and the equation is called

defocusing. If g < 0 the equation is called

focusing. In our case we obtain the defocusing

NLS.
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Some more comments will help understand later

developments... For N large but finite the

mean field evolution is governed by

1

i
∂tφN −∆φN ±

(
vN ∗ |φN |2

)
φN = 0

formally : φN → φ where
1

i
∂tφ−∆φ± g|φ|2φ = 0

+ defocusing , − focusing

The solution φN exists globally in time, but

there is a dichotomy. The focusing NLS blows

up while the defocusing exists globally in time.

This means convergence φN → φ is not entirely

obvious. Actually the focusing case raises some

interesting questions.

• Cubic NLS is H
1
2 critical in 3−d meaning the

initial value problem is well posed only if initial

data are in Hs for s ≥ 1/2, the borderline case

is very challenging. See : Keel, Tao, Visan,

Killip and B. Dodson, after work by the I-team.
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Strichartz :

The main tool for studying NLS are Strichartz

estimates. We will use them later so...consider

the linear problem{
1

i
∂t −∆

}
φ = f

φ(0) = φ0 data

Then we have the following family of esti-

mates,

‖φ‖Lp(dt)Lq(dx) ≤ C‖f‖Lp′(dt)Lq′(dx)
+ ‖φ0‖L2

2

p
+

3

q
=

3

2
, where p ≥ 2

p =∞ , q = 2 energy (easy)

p = 2 , q = 6 end− point Keel,Tao (challenging)

Here p′ and q′ are the dual of p, q respectively.
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• The mixed norms are computed as follows

(for example)

‖ψ‖L2(dt)L6(dx) :=

=

(∫
dt

(∫
dx|ψ(t, x)|6

)1/3
)1/2

• The end-point Strichartz estimate is a cele-

brated result by Keel and Tao.
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How can we use Strichartz in order to study

the existence of solutions of the cubic NLS?

Here is a rough outline : First we take a half

derivative, the equation looks like

1

i
∂tD

1/2φ−∆D1/2φ± |φ|2D1/2φ = 0

D1/2f = F−1|ξ|1/2F
(
f
)

we write Dα = F−1|ξ|αF
(
f
)

also
〈
Dα

〉
= F−1(|ξ|α + 1)F

(
f
)

• Leibnitz for fractional derivatives:

Dα(fg) ∼ (Dαf)g + f(Dαg)

as far as Lp estimates are concerned

Coifman, Meyer, Kenig Ponce, Vega, Christ,

Weinstein. Thus

D1/2(|φ|2φ) ∼ 2|φ|2(D1/2φ) + (D1/2φ))φ2

all terms are treated similarly.
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Applying the end point Strichartz we have

‖D1/2φ‖L2(dt)L6(dx) ≤C ‖φ0‖H1/2(dx)

+‖φ2(D1/2φ)‖
L2(dt)L6/5(dx)

and

‖φ2(D1/2φ)‖
L2(dt)L6/5(dx)

≤C ‖φ‖2L∞(dt)L3(dx)‖D
1/2φ‖L2(dt)L6(dx)

≤C ‖φ‖2L∞(dt)H1/2(dx)
‖D1/2φ‖L2(dt)L6(dx)

where we used Sobolev etc. The point here
is that

‖φ‖
L∞(dt)H1/2(dx)

is the energy estimate in the class of Strichartz
i.e. we can put on the right hand side of the
inequality the quantity

sup
p,q
‖D1/2φ‖Lp(dt)Lq(dx)

Once we realize that we can balance the in-
equalities i.e. the norms appearing on the right
hand side also appear on the left we can prove
local existence on some time interval using
standard arguments. (Fixed point)
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Global (in time) existence of solutions requires

the knowledge of some apriori control of norms

through (for example) energy type estimates.

The energy for the cubic NLS is∫
R3
dx
{
|∇φ|2 ± g|φ|4

}
Notice that the defocusing case allows us the

control the H1 norm which however is of no

direct use since we are considering H1/2 data.

This ”explains” why proving global existence

at low regularity is challenging. See B. Dod-

son... This appears as a Mathematical game

but sometimes you are forced to play it.

Idea : Good estimates for the mean field PDE

lead to good estimates for the many body prob-

lem.
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Second Quantization, Fock space

Our original motivation came from paper by

Rodnianski, Schlein. They used coherent states

and Fock space formalism. The Fock space is

a Hilbert type of space,

F = F0 ⊕ F1 ⊕ . . .⊕ FN ⊕ . . .
Fn := L2(R3n) n− th sector

F0 = C complex constants∣∣∣ψ〉 = (ψ0 . . . ψn . . .) vector in F∣∣∣0〉 := (1,0 . . .) vacuum

We have : Creation and annihilation operators

defined with the property∫
axf(x) : Fn+1 7→ Fn∫
a∗xf(x) : Fn−1 7→ Fn

for f ∈ L2(R3)

• Idea is that they create or destroy particles.
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• For Bosons we symmetrize the functions i.e.

we consider

L2
symm(R3n)

which are functions invariant under coordinate

permutations.
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Defined as follows :

(1) ax(ψn+1) :=
√
n+ 1ψn+1([x], x1 . . . xn)

[x] means frozen

(2) a∗x(ψn−1)

:=
1
√
n

n∑
j=1

δ(x− xj)ψn−1(x1 . . . xj−1, xj+1 . . . xn+1)

insert delta function at every ”slot”

They satisfy the commutation relation (easily

checked) [
ax, a

∗
y

]
= δ(x, y)

Now we can write a Fock space Hamiltonian

and consider the Fock space evolution. The

evolution on the sector FN is the ”classical”

original evolution as before.

• Fock space allows us to introduce (and use)

Algebra techniques into the problem.
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The evolution of the vector
∣∣∣ψ〉 is described by,

{
1

i
∂t +HN

} ∣∣∣ψ〉 = 0

where

HN :=∫
−a∗x∆xδ(x, y)ay +

1

N
a∗xa
∗
yvN(x− y)axay

In the Fock space picture the number of parti-
cles is not fixed. A vector

∣∣∣ψ〉 carries arbitrarily
large number of particles (in general) and the
average number of particles is measured using
the number operator

N :=
∫
a∗xax

so that〈
ψ
∣∣∣N ∣∣∣ψ〉 = N number of particles

The Hamiltonian commutes with the number
operator hence the average number of particles
is conserved.

• We use calligraphic letters in order to de-
note Fock space operators.
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Weil, Shale Segal, Bogoliubov

• Lie Algebra isomorphism. Consider symplec-

tic matrices and the associated quadratic forms

K :=

(
−dT (x, y) l(x, y)
k(x, y) d(x, y)

)

Q(K) :=
∫
dxdy

{(
ax, a

∗
x

)(−dT l
k d

)(
−a∗y
ay

)}
then :[
Q(K),Q(L)

]
= Q

(
[K,L]

)
i.e. the commutation of quadratic forms is

”equivalent” to the commutation of ”matri-

ces”. The matrices here are 2× 2 with entries

kernels, hence infinite dimensional.

• Bogoliubov used it to ”rotate” hence diag-

onalize quadratic Hamiltonians. (see Fetter)

The idea was to compute the phonon spec-

trum of a superfluid. See also Lee, Huang and

Yang.
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Coherent states and pairs

Introduce the operators,

A(φ(t)) :=
∫
R3
dx
{
φ(t, x)ax − φ(t, x)a∗x

}
B(k(t)) :=

1

2

∫
R3×R3

dx1dx2

{
k(t, x1, x2)ax1ax2 − k(t, x1, x2)a∗x1

a∗x2

}
We use them as follows

e−
√
NA(φ)

∣∣∣0〉 = coherent state

=
(
. . . cN

N∏
j=1

φ(xj) . . .
)

at Nth entry

and pair correction :

e−B(k)e−
√
NA(φ)

∣∣∣0〉
i.e. we create states by applying certain type

of operators to the vacuum. The elementary

model is the Harmonic oscillator.
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Our original motivation came from a paper by

Rodnianski and Schlein where they used co-

herent states in order to estimate the rate of

convergence of an exact solution which starts

from a coherent state to the coherent state

evolved via cubic NLS (Gross-Pitaevskii). The

comparison was done in trace norms.

eA(φ(t))
(
eitHe−A(φ(0)

)∣∣∣0〉
Notice that we start with data φ(0) evolve

through eitH and ”conjugate” via e−A(φ(t)).

By adding the correction due to e−B(k(t,x,y)) we

can obtain estimates in Fock space norm (L2),

however one must figure out the evolution of

”kernel” k(t, x1, x2). We can think of k as the

kernel of an operator or simply as a function.
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Some remarks are in order. The exponential

of the matrix

K :=

(
0 k
k 0

)
can be computed,

exp

(
0 k
k 0

)
=

(
cosh(k) sinh(k)
sinh(k) coshT (k)

)
:=

(
c u

u cT

)
The hyperbolic functions appearing above are

computed via composition products.

sinh(k) = k +
1

3
k ◦ k ◦ k + . . .

where for example

(k ◦ k)(x1, x2) :=
∫
dy
{
k(x1, y)k(y, x2)

}
For later use we adopt the notation,

c := cosh(k) , u := sinh(k)

ψp := sinh(2k) = 2u ◦ c
γp := cosh(2k)− 1
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Comparing the exact with the approx-
imate dynamics

Now the idea is as follows :∣∣∣ψexact(t)
〉

= eitHe−
√
NA(φ(0)e−B(k(0)

∣∣∣0〉∣∣∣ψapprox(t)
〉

:= e−
√
NA(φ(t)e−B(k(t)

∣∣∣0〉∣∣∣ψred(t)
〉

:= e
√
NA(φ(t)eB(k(t)eitHe−

√
NA(φ(0)e−B(k(0)

∣∣∣0〉
Call

M(t) := e−
√
NA(φ(t)e−B(k(t) Unitary operator

A computation leads to

1

i
∂t
∣∣∣ψred

〉
= Hred

∣∣∣ψred

〉
where : Hred :=

1

i

(
∂tM∗

)
M+M∗HM
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REMARK :

The operators ax, a∗x are unbounded (they are

also distribution valued). When we consider

integrals involving ax, a∗x and in particular ex-

ponentials we need to be careful to make sure

that the operators are well defined. In our case

one can prove that the operators are unitary.

Notice that we made sure that A(φ) and B(k)

are skew adjoint. For example an operator of

the form

exp
(

1

2

∫
dxdy

{
k(x, y)a∗xa

∗
y

})
may not be well defined.
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• Hred can be computed explicitly. The com-

putation is tedious but straight forward. Our

goal is to figure out the rule of evolution of

φ, k. Start with the observation,

Hred :=
1

i

(
∂tM∗

)
M+M∗HM

rewrite it as :

−
1

i
∂tM∗ =M∗H−HredM∗

and of course
1

i
∂tM = HM−MHred
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and consider the ”matrices” defined below

Lm,n(t, y1 . . . ym;x1 . . . xn)

:=
1

N(n+m)/2

〈
0
∣∣∣M∗(t)a∗y1

. . . a∗ymax1 . . . axnM(t)
∣∣∣0〉

where P := a∗y1
. . . a∗ymax1 . . . axn monomial

We know the rule of evolution of M(t) so

differentiating etc we find,

1

i
∂tL =

1

N(m+n)/2
×{〈

0
∣∣∣[Hred,M∗PM

]∣∣∣0〉+
〈
0
∣∣∣M∗[H,P]M∣∣∣0〉}

Recall that we know (can compute)

Hred

∣∣∣0〉 =
(
X0, X1, X2, X3, X4,0 . . .

)
choose :X1 = X2 = 0

i.e. our rule that defines the evolution is the

elimination of the first and second entries in

Hred

∣∣∣0〉. This is natural. Since we have two

functions at our disposal we should try to elim-

inate two terms.
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In order to motivate our criterion let us con-
sider the reduced evolution

1

i
∂t
∣∣∣ψred

〉
= Hred

∣∣∣ψ〉 ,
∣∣∣ψred(0)

〉
=
∣∣∣0〉

Write ∣∣∣ψred

〉
=
∣∣∣ψ̃〉+

∣∣∣0〉
and

1

i
∂t
∣∣∣ψ̃〉 = Hred

∣∣∣ψ̃〉+Hred

∣∣∣0〉
Therefore∣∣∣ψ̃(t)

〉
=
∫ t

0
ei(t−s)HredHred

∣∣∣0〉ds
=
∫ t

0
ei(t−s)Hred

(
X0, X1, X2, X3, X4 . . .

)
The constant term X0 can be absorbed as a

phase.

Remark : Hred does not preserve the number
of particles. It contains terms (for example)∫

f3a
∗a∗a∗+ c.c.
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The entries X1, X2, X3, X4 look like

X1 ∼ O(
√
N)

X2 ∼ O(1)

X3 ∼ O
(

1√
N

)

X3 ∼ O
(

1

N

)
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• assume that X1 = X2 = 0 then,

if P = linear plus quadratic in a, a∗

then :
〈
0
∣∣∣[Hred,M∗PM

]∣∣∣0〉 = 0

Hence the evolution simplifies to

1

i
∂tL =

1

Nα

〈
0
∣∣∣M∗[P,H]M∣∣∣0〉

Proof : The basic calculation is

M∗axM =
∫
dy
{
ayc(y, x) + a∗yu(y, x)

}
+
√
Nφ(x)

M∗a∗xM =
∫
dy
{
ayu(y, x) + a∗yc(y, x)

}
+
√
Nφ(x)

or

M∗axM := bx +
√
Nφ(x)

M∗a∗xM := b∗x +
√
Nφ(x)
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This means that M transforms a monomial as

follows,

M∗P(a∗, a)M = P
(
b∗+

√
Nφ, b+

√
Nφ

)
M∗P(a∗, a)M

∣∣∣0〉 = (f0, f1, f2,0 . . .)

Recal that we also choose,

Hred

∣∣∣0〉 =
(
X0,0,0, X3, X4,0 . . .

)
Now it is easy to see why〈

0
∣∣∣[Hred,M∗PM

]∣∣∣0〉 = 0
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Since we have

1

i
∂tL =

1

Na

〈
0
∣∣∣M∗[H,P]M∣∣∣0〉

we need to compute the commutations [H,P]

for P linear and quadratic. Straight forward,[
ax1,H

]
=
(

∆x1 −
1

N

∫
dy
{
vN(x1 − y)a∗yay

})
ax1[

ax1ax2,H
]

=
(

∆x1 −
1

2N
vN(x1 − x2)

)
ax1ax2

+ax1ax2

(
∆x2 −

1

2N
vN(x1 − x2)

)
−

1

N

∫
dy
{(
vN(x1 − y) + vN(y − x2)

)
a∗yay

}
ax1ax2[

a∗x1
ax2,H

]
= a∗x1

ax2∆x2 −∆x1a
∗
x1
ax2

+
1

N

∫
dy
{(
vN(x1 − y)− vN(y − x2)a∗x1

a∗yayax2

}
Notice the presence of cubic and quartic mono-

mials.
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We obtain the ”hierarchy”{
1

i
∂t −∆x1

}
L0,1

+
1

N3/2

∫
dy
{
vN(x1 − y)L1,2(y; y, x1)

}
= 0{

1

i
∂t −∆x1 −∆x2

}
L0,2

+
1

N2

∫
dy
{(
vN(x1 − y) + vN(y − x2)

)
L1,3

}
= 0{

1

i
∂t + ∆x1 −∆x2

}
L1,1

+
1

N2

∫
dy
{(
vN(x1 − y)− vN(y − x2)

)
L2,2 = 0

}
The point here is that the system is closed.

Our ansätz allows us to compute higher order

matrices in terms of L0,1, L0,2, L1,1 and their

conjugates.
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We have to compute the L matrices...

L0,1 =
〈
0
∣∣∣bx1 +

√
Nφ(x1)

∣∣∣0〉 =
√
Nφ(x1)

L0,2 =

=
〈
0
∣∣∣(bx1 +

√
Nφ(x1)

)(
(b2 +

√
Nφ(x2)

)∣∣∣0〉
= Nφ(x1)φ(x2) + (u ◦ c)(x1, x2)

:= N
(
ψc +

1

2N
ψp
)

:= Nψ

L1,1 = Nφ(x1)φ(x2) + (u ◦ u)(x1, x2)

= N
(
γc +

1

2N
γp) := Nγ

c := condensate , p := pairs

as a matter of fact,

γp = cosh(2k)− 1 , ψp = sinh(2k)

The rest of the matrices L1,3 etc can be

computed in a similar (tedious) manner. The

ansätz that we adopted ”closes” the hierarchy

so we only have (essentially) two equations.
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Matrices again..this is inspired by the Lie Al-

gebra isomorphism (see earlier) Recall

J

(
a
a∗

)
=

(
−a∗
a

)
, J :=

(
0 −I
I 0

)
and form the tensor product,(

−a∗x
ax

)
(aya

∗
y) =

(
−a∗xay −a∗xa∗y
axay axa∗y

)
Therefore we construct the 2×2 matrix which

we call Φ,

Φ :=

(
−γ −ψ
ψ γT

)
= Φc + Φp

=

(
−φ⊗ φ −φ⊗ φ
φ⊗ φ φ⊗ φ

)
+

1

2N

(
−γp −ψp
ψp γTp

)
i.e. we can separate the matrix into conden-

sate plus pairs. The idea is that (for example)

ψ(t, x1, x2) should not be (in general) a tensor

product thus describing pair interactions.
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Let us introduce the matrix

S3 :=

(
−I 0
0 I

)
and the operator,

Hρ = −∆x + (vN ∗ ρ)(x)

where ρ is the overall one particle density,

ρ(t, x) := γ(t, x, x) = ρc + ρp

ρc(t, x) = |φ(t, x)|2

ρp(t, x) =
1

2N

∫
R3
dy
{
|u(t, x, y)|2

}
As we will see the average of the density is a

conserved quantity.
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The adjoint of the matrix Φ is

Φ∗ = S3ΦS3 =

(
−γ ψ

−ψ γT

)
γT = γ

With these we have the tools to write down

the evolution equations for Φ and Φc. The

equations for the matrices Φ,Φc are,

1

i
∂tΦ +

[
HρS3,Φ

]
+

1

2N

[
S3,vNΦ

]
+
[
vNΦ∗,Φ

]
=
[
vNΦ∗c,Φc

]
1

i
∂tΦc +

[
HρS3,Φc

]
+
[
vNΦ∗,Φc

]
=
[
vNΦ∗c,Φc

]
From the above we can see that if Φp = 0

then the second equation becomes

1

i
∂tΦc +

[
HρcS3,Φc

]
= 0

which is the cubic NLS (Gross Pitaevskii).
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A few comments about our notation, vNΦ means

point wise multiplication i.e.

vNΦ :=

(
−vNγ −vNψ
vNψ vNγ

T

)
Commutations are computed as composition

products, thus[
vNΦ∗,Φ

]
= (vNΦ∗) ◦Φ−Φ ◦ (vNΦ∗)

=
∫
dy {vN(x1 − y)Φ∗(x1, y)Φ(y, x2)}

−
∫
dy {Φ(x1, y)vN(y − x2)Φ∗(y, x2)}
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It is a good idea to separate Φ into symmetric

and anti-symmetric parts i.e. we define

Γ :=
1

2

(
Φ + Φ∗

)
=

(
−γ 0
0 γT

)

Λ :=
1

2

(
Φ−Φ∗

)
=

(
0 −ψ
ψ 0

)

Note that γT = γ while ψ is symmetric i.e.

ψT = ψ. Now the evolution equations can be

written as follows

1

i
∂tΓ +

[
HρS3,Γ

]
+
[
vNΓ,Γ

]
−
[
vNΛ,Λ

]
= F (φ)

1

i
∂tΛ +

[
HρS3,Λ

]
+

1

N
vNΛ +

[
vNΓ,Λ

]
−
[
vNΛ,Γ

]
= G(φ)

where F (φ) and G(φ) are quartic expressions

of the condensate φ. Notice the presence of

the term of

1

N
vNΛ

in the Λ equation.
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This system was also derived by V. Back, S.

Breteaux, T. Chen, J. Fröhlich, I.M. Sigal in

a slightly different context. See also Nam and

Napiorkowski.

We had (with M. Machedon) an earlier deriva-

tion of the coupled system which used a dif-

ferent idea. Recall the computation

Hred

∣∣∣0〉 = (X0, X1, X2, X3, X4,0 . . .)

The first term (constant) X0 integrated over

time serves as Lagrangian whose variation pro-

duces the evolution equations. Let us call

L(φ, u) := −
∫
dt{X0}

where φ and u = sinh(k) are the dynamic vari-

ables.

37



We can compute (tedious but straight forward).
With the convention φ(t, x1) = φ1, u(t, x1, x2) =
u1,2 etc we have

L =: −
∫
dt{X0}

= N
∫
dtdx1

{
Im(φ1∂tφ1) + |∇φ1|2

}
+
∫
dtdx1dx2

{
Im(u1,2∂tu1,2) + |∇u1,2|2

}
+
N

2

∫
dtdx1dx2

{
vN,1−2

∣∣∣∣φ1φ2 +
1

2N
ψp,1,2

∣∣∣∣2
}

+
1

2

∫
dtdx1dx2dx3

{
vN,1−2

∣∣∣φ1u2,3 + φ2u1,3

∣∣∣2}
+

1

2N
×∫

dtdx1dx2

{
vN,1−2|(u ◦ u)1,2|2 + (u ◦ u)1,1(u ◦ u)2,2

}
The variation

δL

δφ
= 0 ,

δL

δu
= 0

implies X1 = X2 = 0

The resulting system can be rewritten in the
form that we gave earlier.
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The importance of the Lagrangian formulation

lies in the fact that one can derive conserva-

tion laws (Nöther’s theorem). Time transla-

tion invariance leads to energy conservation.

Gauge invariance leads to mass (or number)

conservation. Momenta are not conserved but

structure equations can be derived using Lie

derivatives of appropriate vector fields.

• The ”naive” method is to multiply the equa-

tion with an appropriate derivative and inte-

grate by parts. This, of course, works but we

do not know why. An even more direct method

is to differentiate in time some (appropriate)

integral.
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The energy is given by the integral, (again we

denote u1,2 := u(t, x1, x2) etc)

NE := N
∫
dx1

{
|∇φ1|2

}
+
∫
dx1dx2

{
|∇u1,2|2

}
+
N

2

∫
dx1dx2

{
vN,1−2

∣∣∣∣φ1φ2 +
1

2N
ψp,1,2

∣∣∣∣2
}

+
1

2
dx1dx2dx3

{
vN,1−2|φ1u2,3 + φ2u1,3|2

}
+

1

2N

∫
dx1dx2

{
vN,1−2

(
|(u ◦ u)1,2|2 + ρp,1ρp,2

)}
where ρp is the pair density density

ρp,1 := γp(t, x1, x1)

The integral of the overall density ρ(t, x, x) :=

γ(t, x, x) is conserved.

M :=
∫
dx{ρ} = constant

Recall that ρ = ρc + ρp with ρc = |φ|2 and

ρp = (1/2N)γp(t, x, x).
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• Interaction Morawetz estimate (Lin and Srauss)

(original idea from I-team Colliander, Keel, Staffi-

lani, Takaoka, Tao) here due to a very nice

argument by Jacky Chong. The estimate is

‖ρ2‖L1(dtdx) ≤C
√
EM

The point of this and the other energy, mass

estimates is that the hold globally in time. It is

the extra ingredient that goes into Strichartz

estimates.
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General idea is to consider :

pj := momenta , ρ := density , e := energy

which satisfy a set of structure equations

∂tρ+∇jpj = 0

∂tpj +∇k
{
σkj − δ

k
jλ
}

+ lj = 0

∂te+∇jqj = 0

λ = Lagrangian density

and for appropriate vector field Xj the tensor

product contracted with Xj

∂t
(
(ρ⊗ pj)Xj

)
= . . .

The end result is to check that the signs of

various quantities are desirable. For the defo-

cusing NLS the signs cooperate.
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EXISTENCE

We need a general method to establish exis-

tence of our system. The challenge is to pick

the correct norms so that we can balance the

left with the right hand side. See our earlier

computation with the cubic NLS.

Motivated by the cubic NLS we use Strichartz

with half derivatives on each variable

D
1/2
1 Φ(t, x1, x2)D

1/2
2

For β < 1 we have some room to consider

higher derivatives,

Dα
1Φ(t, x1, x2)Dα

2 , where α =
1 + ε

2
We will use mixed Strichartz norms, motivated

by work of Xuwen Chen and Justin Holmer.
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Remark :

Let me explain the reason for doing what will

follow. First, for N fixed it is relatively easy to

prove existence of solutions with apriori bounds

that contain N . However we want to establish

existence using apriori bounds that are inde-

pendent of N for two reasons. One is that we

would like to consider the limit equations (as

N → ∞. The other is that if we find bounds

independent of N this in turn implies better

bounds for the Fock space evolution of the

general form∥∥∥∥∣∣∣ψapprox

〉
−
∣∣∣ψexact

〉∥∥∥∥
F
≤
C(t)

Nα

where C(t) grows like a polynomial in time.

See E. Kuz, J. Chong and Z. Zhao as well

(recent) J. Chong, M. Machedon, Z. Zhao.
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Mixed Strichartz

The inspiration for this was the work of X.
Chen and J. Holmer. Consider the linear equa-
tion, {

1

i
∂t −∆1 −∆2

}
ψ = F , ψ(0) = ψ0

xj ∈ R3 for j = 1,2

Then the following estimates hold

‖ψ‖Lp(dt)Lq(dx1)L2(dx2) ≤C
‖F‖

Lp
′(dt)Lq′(dx1)L2(dx2)

+ ‖ψ0‖L2

where
2

p
+

3

q
=

3

2
p ≥ 2

Notice that in space coordinates we use mixed
norms Lq(dx1)L2(dx2) and we attain the range
of exponents as in the three dimensional case.
Also the end-point estimate holds true. An-
other important observation is the any norm
on the right hand side controls any other on
the left.
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Simple rotations show that (for the same range

of exponents we have (reversing the roles of x1

and x2,

‖ψ‖Lp(dt)Lq(dx2)L2(dx1) ≤C
‖F‖

Lp
′(dt)Lq′(dx2)L2(dx1)

+ ‖ψ0‖L2

We also have the inequalities

‖ψ‖Lp(dt)Lq(dx1+2)L2(dx1−2) ≤C
‖F‖

Lp
′(dt)Lq′(dx1+2)L2(dx1−2)

+ ‖ψ0‖L2

where the rotated coordinates are,

x1+2 :=
1√
2

(x1 + x2)

x1−2 :=
1√
2

(x1 − x2)
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The reason that we want to consider mixed

spaces and rotated coordinates in is because

(recall the equation for Λ)

1

i
∂tΛ +

[
HρS3,Λ

]
+

1

N
vNΛ +

[
vNΓ,Λ

]
−
[
vNΛ,Γ

]
= G(φ)

and observe

1

N
vN(x1−2)Λ(t, x1, x2)

=
1

N
vN(x1−2)Λ(t, x1+2, x1−2)

It is advantageous to estimate in rotated co-

ordinates. On the other hand[
vNΓ,Λ

]
=
∫
dy {vN(x1 − y)Γ(x1, y)Λ(y, x2)}

−
∫
dy {Λ(x1, y)vN(y − x2)Γ(y, x2)}

→ as N →∞(
ρ(x1)S3

)
Λ(x1, x2)− Λ(x1, x2)

(
ρ(x2)S3

)
and the rotated coordinates do not offer an

advantage.

47



Here we have that ρ is the density,

ρ(t, x) = γ(t, x, x)

In a similar spirit,[
vNΛ,Γ

]
→ as N →∞

Λ(t, x1, x1)Γ(t, x1, x1)− Γ(t, x1, x2)Λ(t, x2, x2)

This indicates the need to estimate Λ(t, x, x)
or ψ since

Λ =

(
0 −ψ
ψ 0

)
=

(
0 −φ⊗ φ

φ⊗ φ 0

)
+

1

2N

(
0 −ψp
ψp 0

)
i.e. we collapse the coordinates along the

diagonal. These are called ”collapsing” esti-
mates and the norm is

‖ · ‖L∞(dx1−2)L2(dtdx1+2)

• Finally we would like to imitate the strat-
egy for the cubic NLS where we took half a
derivative. Now we need to estimate :

‖D1/2
1 ΦD

1/2
2 ‖S

S = the family of Strichartz norms

48



Let us check if the method works by looking

at some ”judiciously” chosen terms and see if

we can balance them. In what follows I will

pretend that I took N →∞ in order to simplify

the computations. Recall the equations,

1

i
∂tΓ +

[
HρS3,Γ

]
+
[
vNΓ,Γ

]
−
[
vNΛ,Λ

]
= F (φ)

1

i
∂tΛ +

[
HρS3,Λ

]
+

1

N
vNΛ +

[
vNΓ,Λ

]
−
[
vNΛ,Γ

]
= G(φ)

Differentiating the second equation we obtain

something like (Fractional Leibnitz)

1

i
∂tD

1/2
1 ΛD

1/2
2 +

[
−∆S3,Λ

]
=

−
1

N
(DvN(x1−2))Λ(t, x1, x2)

−ρ(x1)D
1/2
1 ΛD

1/2
2

+(D
1/2
1 Λ(t, x1, x1))(Γ(t, x1, x2)D

1/2
2 )

+ . . .
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I picked three terms that explain what comes

next. First look at the second term in dual

end-point Strichartz,∥∥∥ρ(t, x1)D
1/2
1 ΛD

1/2
2

∥∥∥
L2(dt)L6/5(dx1)L2(dx2)

≤ ‖ρ‖θ
L∞(dt)L1(dx)‖ρ‖

1−θ
L2(dtdx)

×

‖D1/2
1 ΛD

1/2
2 ‖L2(dt)L6(dx1)L2(dx2)

So this is O.K. because of the ”mass” con-

servation and the collapsing estimate. The ex-

ponents θ and 1− θ can be computed but are

irrelevant.
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Now let us look at the third term,∥∥∥D1/2
1 Λ(x1, x1)(ΓD

1/2
2 )

∥∥∥
L2(dt)L6/5(dx1)L2(dx2)

≤ ‖D1/2
1 Λ(t, x1, x1)‖L2(dtdx1) ×

‖ΓD1/2
2 ‖L∞(dt)L3(dx1)L2(dx2)

≤ ‖D1/2
1 Λ(t, x1, x1)‖L2(dtdx1) ×

‖ΓD1/2
2 ‖L∞(dt)L2(dx2)L3(dx1)

≤ ‖D1/2
1 Λ(t, x1, x1)‖L2(dtdx1) ×

‖D1/2
1 ΓD

1/2
2 ‖L∞(dt)L2(dx1dx2)

where we used Sobolev and the last term is

the energy estimate in the Strichartz family.

The above calculation tells us that we need to

estimate∥∥∥D1/2
1+2Λ(t, x1+2, x1−2)

∥∥∥
L∞(dx1−2)L2(dtdx1+2)

These are called (linear) collapsing estimates.

The reason for the name is because we collapse

the coordinates i.e. we take x1 = x2.
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Now let us look at the first term. First notice

the

1

N
(DvN) =

1

N
N4βDv(Nβx)

If β = 1 then this looks like

N3w(Nx)

which for all practical purposes is a delta func-

tion. This means that we can only estimate it

in L1. Let us put a delta function and write

δ(x1−2)Λ(t, x1+2, x1−2)

Unfortunately this does not belong to any dual

Strichartz spaces so we need a new idea.
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What saves the day is the use of time deriva-

tives. Let us look at the Fourier transform of

the term,

1(ξ1−2)Λ̂(τ, ξ1+2)

Obviously the integrability in ξ1−2 is a prob-

lem. Now

write F = δ(x1−2)Λ(t, x1+2, x1−2) and

D
1/2
1 ΛD

1/2
2 =

∫ t
0
ei(t−s)(∆1+∆2)F (s, ·)ds

=
∫ t

0

i

∆1 + ∆2
∂s
{
ei(t−s)(∆1+∆2)

}
F (s, ·)ds

=
∫ t

0
ei(t−s)(∆1+∆2) −i∂sF (s, ·)

∆1+2 + ∆1−2
ds+ b.t.

In Fourier space we now have

∂tΛ̂(t, ξ1+2, ξ1+2)

|ξ1+2|2 + |ξ1−2|2

thus we gain integrability in ξ1−2.
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Actually we do not need a full time derivative,

it is enough to consider only a quarter time

derivative and estimate,∥∥∥|∂t|1/4Λ(t, x1+2, x1−2)
∥∥∥
L∞(dx1−2)L2(dtdx1+2)

This leads us to a new ingredient namely quar-

ter time derivative combined with collapse.
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Collapsing estimates

These type of estimates appeared in the work

of Klainerman and Machedon (the time deriva-

tive is a new ingredient). Consider the linear

evolution,{
1

i
∂t −∆1 −∆2

}
Λ = F , Λ(0) = Λ0

Then we have

‖(|∂t|1/4 +D
1/2
1+2)Λ‖L∞(dx1−2)L2(dtdx1+2)

≤C ‖D
1/2
1 Λ0D

1/2
2 ‖L2

+‖D1+/2
1 FD

1+/2
2 ‖

X−1/2+δ

+‖D1+/2
1 F‖

X−1/4+δ

where Xb are Bourgain spaces.
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Bourgain spaces

In the context of Schrödinger they were intro-

duced and used by Bourgain. For the wave

equation they were introduced (earlier) by M.

Beals but their first substantial use was by

Klainerman and Machedon.

The symbol of the Schrödinger operator is (Fourier

transform in space-time)

σ := τ + |ξ1|2 + |ξ2|2〈
σ
〉

:= |σ|+ 1

‖F‖Xb = ‖
〈
σ
〉b
F̂‖L2

where F̂ = F̂ (τ, ξ1, ξ2)

The reason that they are useful is the following

:
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(see D. Tataru)

for 0 < b <
1

2
, p, q > 2

‖F‖Lp(dt)Lq(dx1)L2(dx2) ≤Cb ‖F‖Xb

and

‖F‖X−b ≤Cb ‖F‖Lp′(dt)Lq′(dx1)L2(dx2)

where
2

p
+

3

q
=

5− 2b

2

We see that we can get arbitrarily close to

the Strichartz exponents by choosing b close

to 1/2. The estimates (however) are not valid

for β = 1/2.
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For β < 1 we can work with D
1
2+ derivatives

and balance the inequalities. However, in or-

der to work with Bourgain spaces we need to

localize in time on some fixed interval [0, T ]

which implies that all our constants in the in-

equalities will depend on T . Thus we obtain

a local in time result on some fixed interval

[0, T ]. This is not desirable and we need to

put on the right hand side of our inequalities

dual Strichartz (instead of Bourgain spaces)

with constant independent of time.
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In addition (as we saw earlier) it is advan-

tageous to use Strichartz in rotated coordi-

nates since for some terms it is useful to use

x1+2, x1−2 coordinates while on others it is

better to use x1, x2. Here is a linear estimate

regarding this which is new and it has its own

interest. The proof was inspired by Journe Sof-

fer and Sogge as well as Frank, Lewin, Lieb

and Seiringer. Consider{
1

i
∂t −∆1 −∆2

}
Λ = F , Λ(0) = 0

then∥∥∥Λ∥∥∥
L2(dt)L6(dx1)L2(dx2)

≤C∥∥∥F ∥∥∥
L2(dt)L6/5(dx1−2)L2(dx1+2)

Since this is an end-point estimate one has

to use the method (or idea) of Keel and Tao

which however works in the same way. The

key ingredient is an estimate on the Green’s

function.
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We need to show that collapsing estimates

work when one puts the right hand side in dual

Strichartz. Consider (again){
1

i
∂t −∆1 −∆2

}
Λ = F , Λ(0) = 0

We want an estimate of the form,∥∥∥(|∂t|14 +D
1
2
1+2)Λ(t, x1+2, x1−2)

∥∥∥
Lcoll

≤C
∥∥∥D1

2
1FD

1
2
2

∥∥∥
S̃ ′

where

Lcoll := L∞(dx1−2)L2(dtdx1+2)

and S̃ ′ = dual Strichartz with p′ > 2

The fact that end-point is excluded is due the

the Christ-Kiselev Lemma.
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• Xiaoqi Huang figured out how to treat the

critical (β = 1) case (assuming small potential)

. This involves some novel estimates.

For the previous estimate the time derivative is

harder to handle. For the space derivative we

can use the Christ Kiselev lemma and duality.

Let me explain.∣∣∣〈eit(∆1+∆2)f(x1, x2), G(t, x1, x2)
〉
dtdx1dx2

∣∣∣
=
∣∣∣〈f, G̃(∆1 + ∆2, ·)

〉∣∣∣ =
∣∣∣〈f̂ , Ĝ(|ξ1|2 + |ξ2|2, ·)

〉∣∣∣
≤C ‖f‖L2‖G‖S ′
therefore

‖Ĝ(|ξ1|2 + |ξ2|2, ξ1, ξ2)‖L2 ≤ ‖G‖S ′
this is a Fourier restriction estimate

S ′ = dual Strichartz

We also know for f(x1, x2)∥∥∥∥D1/2
1+2e

it(∆1+∆2)f

∥∥∥∥
Lcoll

≤C
∥∥∥D1/2

1 fD
1/2
2

∥∥∥
L2

61



where (F (s, x1, x2))

F̃ (∆1 + ∆2, ·) :=
∫ +∞

−∞
e−is(∆1+∆2)F (s, ·)ds

Now let us consider,

D
1/2
1+2

∫ +∞

−∞
ei(t−s)(∆1+∆2)F (s, ·)ds

=
∫ +∞

−∞
D

1/2
1+2e

i(t−s)(∆1+∆2)F (s, ·)ds

= D
1/2
1+2e

it(∆1+∆2)F̃ (∆1 + ∆2, ·)
and∥∥∥D1/2

1+2e
it(∆1+∆2)F̃ (∆1 + ∆2, ·)

∥∥∥∥
Lcoll

≤C
∥∥∥D1/2

1 F̃ (∆1 + ∆2, ·)D
1/2
2

∥∥∥
L2

≤C
∥∥∥D1/2

1 FD
1/2
2

∥∥∥
S ′

where we combined the previous collapsing

estimate and the Fourier restriction theorem.
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Now Christ Kiselev implies,∥∥∥∥ ∫ t
0
D

1/2
1+2e

i(t−s)(∆1+∆2)F (s, ·)ds
∥∥∥∥
Lcoll

≤C
∥∥∥D1/2

1 FD
1/2
2

∥∥∥
S̃ ′

excluding the end point. Because the Christ

Kiselev Lemma requires that if the time inte-

gration on the left is in L2 the integration on

the right must be in Lp
′

for some p′ < 2.
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Time derivatives

Regarding time derivatives, we cannot use the

Christ Kiselev lemma directly. So we need

something new. Define the function ψ,

ψ(t) :=
∫ t

0
ei(t−s)(∆1+∆2)F (s, ·)ds

For simplicity we will write

∆ := ∆1 + ∆2

Now consider the time difference with step h,

δ1/4[h]ψ(t) :=
ψ(t+ h)− ψ(t)

h1/4

Since the difference captures the derivative at

frequencies 1/h we will estimate the sum∑
j

∥∥∥δ1/4[hj]ψ
∥∥∥
Lcoll

≤C
∥∥∥D1/2

1 FD
1/2
2

∥∥∥
S̃ ′

where hj := 2−j
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Now we compute,

δ1/4[h]ψ =
1

h1/4

∫ h
0
eis∆F (t+ s, ·)ds

+
eih∆ − 1

h1/4
eit∆

∫ t
0
eis∆F (s, ·)ds

:= Rh[F ] +Kh[F ]

The second integral Kh is easier to estimate

using Christ Kiselev and we leave it for later.

For the first integral we will do a direct com-

putation. We denote,

Ξ := (ξ1, ξ2)

and compute the Fourier transform

Fx1,x2 7→ξ1,ξ2
{Rh[F ]}

=
∫
R
dσ

{
χ̂h(σ)eit(|Ξ|

2−σ)F̂
(
|Ξ|2 − σ,Ξ

)}
where : χh(s) :=

χ[0,t](s)

h1/4

with χ[0,h] := characteristic function

65



Now let us look at the integral,

Qh :=
∫

x1−2=0

dtdx1+2

{
Rh[F ]Rh[F ]

}
With the frequency variables

Ξ := (ξ1, ξ2) , Ξ′ := (ξ3, ξ4)

the collapse along the diagonal and integration

over time produce the collapsing mechanism

described by

C := δ(ξ1+2 − ξ3+4)δ
(
|ξ1−2|2 − σ1 − |ξ3−4|2 + σ2

)
In view of this let us define

ξ := ξ1+2 = ξ3+4

E1 := |ξ1−2|2 , E2 := |ξ3−4|2

τ := |ξ|2 + E1 − σ1 = |ξ|2 − E2 − σ2
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So now the collapsing mechanism is described

by

C := δ(ξ1+2 − ξ3+4)δ
(
E1 − E2 + σ2 − σ1

)
The integral Qh becomes

Qh =
∫
R3
dξ
∫
R4
dσ1dσ2dE1dE2(E1E2)1/2 ×

δ(E1 − E2 − σ1 + σ2)χ̂h(σ1)χ̂h(σ2)×
F̂av(τ, ξ, E1)F̂av(t, ξ, E2)

where

F̂av(t, ξ, E) :=
∫

|ω|=1

F̂ (t, ξ +
√
Eω, ξ −

√
Eω)dω

is the angular average

Notice that we have the estimate,

|F̂av| ≤
1√

|ξ|+
√
E
×

√√√√√
∫

|ω|=1

|ξ −
√
Eω||F̂ (t, ξ +

√
Eω, ξ −

√
Eω)|2dω
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and define for simplicity,

A
F̂

(t, ξ, E) :=

:=

√√√√√
∫

|ω|=1

|ξ −
√
Eω||F̂ (t, ξ +

√
Eω, ξ −

√
Eω)|2dω

We rotate coordinates as follows

1

2

(
E1 + E2 + σ1 + σ2

)
:= Ẽ1

1

2

(
E1 − E2 + σ1 − σ2

)
:= Ẽ2

1

2

(
E1 + E2 − σ1 − σ2

)
:= σ̃1

1

2

(
E1 − E2 − σ1 + σ2

)
:= σ̃2

and

collapsing mechanism is δ(σ̃2)

while notice that σ̃1 = τ − |ξ|2
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We can solve for the original variables

E1 =
1

2

(
Ẽ1 + Ẽ2 + τ − |ξ|2

)
E2 =

1

2

(
Ẽ1 − Ẽ2 + τ − |ξ|2

)
σ1 =

1

2

(
Ẽ1 + Ẽ2 − τ + |ξ|2

)
σ2 =

1

2

(
Ẽ1 − Ẽ2 − τ + |ξ|2

)
For convenience let us also write

Ê1 :=
1

2

(
Ẽ1 + Ẽ2

)
Ê2 :=

1

2

(
Ẽ1 − Ẽ2

)
q :=

1

2

(
τ − |ξ|2

)
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and we have

Qh ≤C
∫
R×R3

dτdξ
∫
R2
dÊ1dÊ2

×|χ̂h(Ê1 − q)|Ê1 − q|1/4|Ê1 + q|1/4A
F̂

(τ, ξ, Ê1 + q)

|Ê1 − q|1/4

×|χ̂h(Ê2 − q)||Ê2 − q|1/4|Ê2 + q|1/4A
F̂

(τ, ξ, Ê2 + q)

|Ê2 − q|1/4

Let us look at one of the integrals, let’s say
for Ê1 which we now write simply as E can be
estimated as follows,∫

dE|χ̂h(E − q)||E − q|1/4|E + q|1/4A
F̂

(τ, ξ, E + q)

|E − q|1/4

≤
(∫

dσ|χ̂h(σ)|2|σ|1/2
)1/2

×

∫ dE
|E + q|1/2A2

F̂
(t, ξ, E + q)

|E − q|1/2


1/2

We will look later at the integral∫
dσ|χ̂h(σ)|2|σ|1/2
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Consider now the integral,

I :=
∫
dE
|E + q|1/2A2

F̂
(t, ξ, E + q)

|E − q|1/2

We can rewrite it by defining

E + q := ρ2 , ξ1−2 := ρω

so we have E − q = |ξ|2 + ρ2 − τ

hence

I =
∫
R3
dξ1−2

|ξ2||F̂ (τ, ξ1, ξ2)|2∣∣∣|ξ1−2|2 + |ξ1−2|2 − τ
∣∣∣1/2

Using this information

71



we have the estimate

Qh ≤C
∫
dτdξ1dξ2

|ξ2||F̂ (τ, ξ1, ξ2)|2∣∣∣|ξ1|2 + |ξ2|2 − τ
∣∣∣1/2

≤C
∥∥∥FD1/2

2

∥∥∥
L2(dt)L3/2(dx1)L2(dx2)

≤C
∥∥∥D1/2

1 FD
1/2
2

∥∥∥
L2(dt)L6/5(dx1)L2(dx2)

where in the first line we used the Bourgain

spaces estimate and in the second Sobolev.

Now let us consider hj = 2j and decompose

the function F̂ by projecting onto parabolic re-

gions such that

|σ| := τ − |ξ1|2 − |ξ2|2 ∼ 2k

while hj := 2−j

Let us call the projection onto parabolic re-

gions

Ppar
k := projection on range |σ| ∼ 2k
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The point of the projection is that∫
σ∼2k

|χ̂hj(σ)||σ|1/2dσ

=
∫
σ∼2k

|eihjσ − 1|2

|hjσ|1/2

dσ

σ

≤C min
{

(2−j2k)3/2, (2−j2k)−1/2
}

This is small in the off diagonal cases j << k

or j >> k. Summing over j, k gives the desired

estimate.

73



The term Kh is easier to handle. Standard

methods imply∥∥∥eh∆ − 1

h1/4
eit∆f

∥∥∥
Lcoll

≤C
∥∥∥D1/2

1 fD
1/2
2

∥∥∥
L2

and with Pk denoting the projection onto fre-

quencies √
|ξ1|2 + |ξ2|2 ∼ 2k

and hj = 2−j we have a frequency localized

estimate ∥∥∥ehj∆ − 1

h1/4
eit∆Pkf

∥∥∥
Lcoll

≤C

min
{

(2−j22k)3/4, (2−j22k)−1/4
}

×
∥∥∥D1/2

1 PkfD
1/2
2

∥∥∥
L2
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Now, ∥∥∥∥∥eih∆ − 1

h1/4
eit∆

∫ +∞

−∞
e−is∆F (s, ·)ds

∥∥∥∥∥
Lcoll

≤C
∥∥∥D1/2

1 F̃ (∆, ·)D1/2
2

∥∥∥
L2

≤C
∥∥∥D1/2

1 FD
1/2
2

∥∥∥
S ′

from the Fourier restriction theorem on the

parabola. Christ Kiselev lemma implies the

same estimate with the end point excluded.

∥∥∥∥∥eih∆ − 1

h1/4
eit∆

∫ t
0
e−is∆F (s, ·)ds

∥∥∥∥∥
Lcoll

≤C
∥∥∥D1/2

1 FD
1/2
2

∥∥∥
S̃ ′

Finally if we pick hj = 2−j and project using

Pk. We have off diagonal decay etc.
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